

Технология создания стендового доклада

Романова Наталья Николаевна

Что такое стендовый доклад?

«Стендовый доклад представляет собой комбинацию заметного оформления, цветов и сообщений, призванных привлечь и удержать внимание проходящих мимо людей, оставить в их сознании заметный след от представленной идеи»

(Виттич Шулер.1973)

В чем его преимущество?

Более широкая аудитория

Большая гибкость

Подчеркивает ключевые моменты

Учет интересов аудитории

Свободное изложение

Многократное использование постера

В чем его преимущество?

ОСНОВНАЯ
ЧАСТЬ
СТЕНДОВОГО
ДОКЛАДА –
ЭТО ПОСТЕР

ЧИТАЕМОСТЬ

НАГЛЯДНОСТЬ

понятность

Программы

- 1. PowerPoint
- 2. Microsoft Office Publisher
- 3. Photoshop
- 4. Pinterest
- 5. Microsoft Office Word

Рекомендуемое расположение материала на постере

Цель исследовательской (проектной) работы

Основная гипотеза Название работы

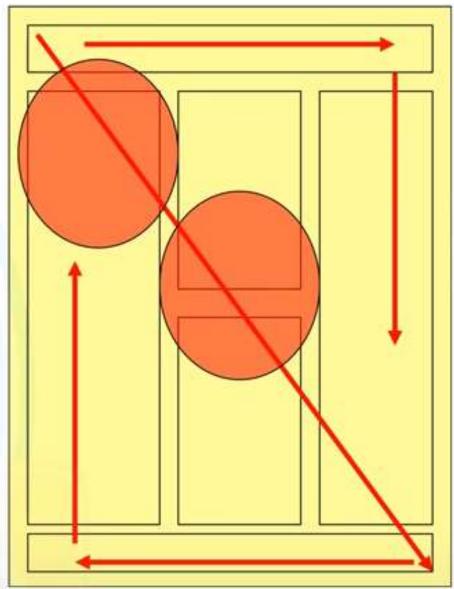
Авторы и научные руководители

Благодарности

Содержание работы.
Описание применяемых методов и методик.
Обоснование применения, связь с гипотезой.

Рисунки, схемы, иллюстрирующие работу. Описание основных результатов


Таблицы диаграммы


Итог, вывод, результаты работы

Рекомендуемое расположение материала на постере

КАК РАЗМЕСТИТЬ ИНФОРМАЦИЮ?

МАТЕРИАЛ ДЛЯ ПОСТЕРА

ФОТОГРАФИЯ

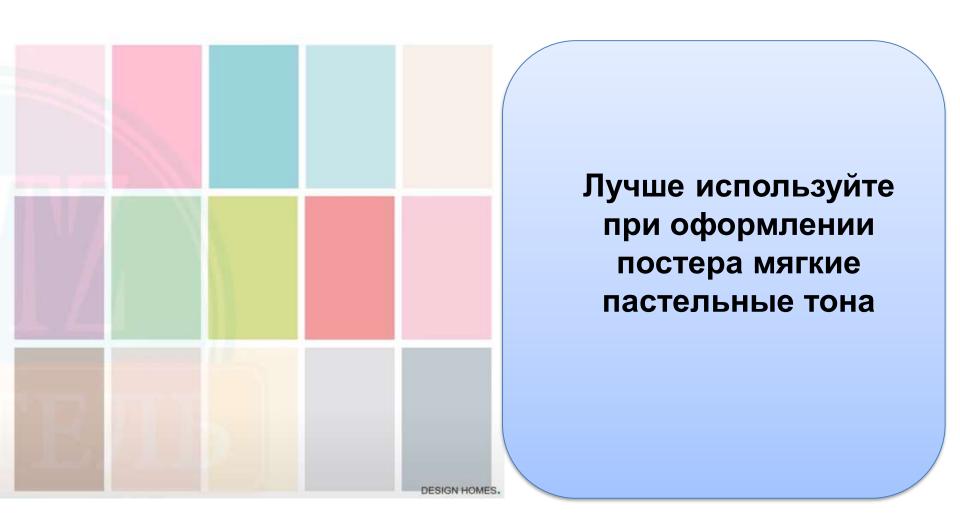
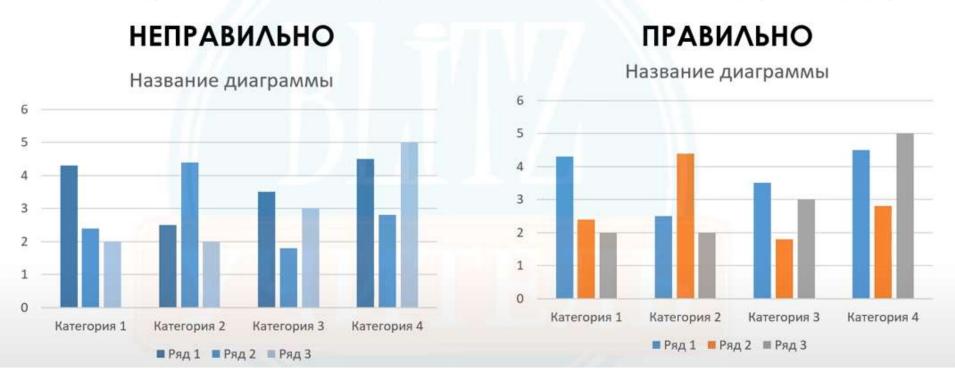

РИСУНОК

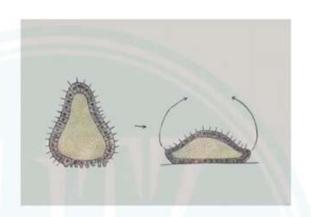
ГРАФИК (СХЕМА)

ДИАГРАММА

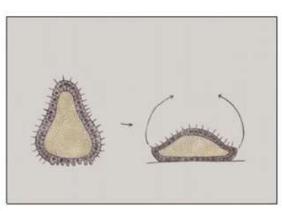
 Иллюстрации должны быть понятными сами по себе, привлекательными и достаточно большими


КАК ВЫБРАТЬ ДИЗАЙН ПОСТЕРА?

НЕСКОЛЬКО СОВЕТОВ ПО ОФОРМЛЕНИЮ


COBET Nº1

При создании диаграмм не используйте близкие цвета! Используйте цвета, которые хорошо отличаются друг от друга.



COBET Nº2:

Фотографии и рисунки выглядят выигрышнее, если обвести их узким черным контуром

COBET Nº3

На темном фоне используйте светлый шрифт, а на светлом – темный шрифт.

COBET Nº4

Избегайте использования пестрого фона.

Ошибки при составлении

- 1. Цель и основные пункты трудно найти;
- 2. Шрифт текста слишком мал;
- 3. Бедная графика;
- 4. Плохая организация расположения представленных материалов.

РОССИЙСКИЙ НАЦИОНАЛЬНЫЙ ЮНИОРСКИЙ ВОДНЫЙ КОНКУРС

Название проекта:

Упразднение актуальности создания кислотонакопителей на огромных территориях

Авторы исследовательской работы: Сидорова Наталия Леонидовна, ученица 11-го класса.

Сидоров Леонид Леонидович, ученик 9-го класса

Руководитель: Захаренко Галина Викторовна учитель биологии. Учитель высшей категории.

Аникеева Наталья Владимировна учитель биологии. Учитель высшей категории.

Шульга Галина Павловна учитель химии. Учитель высшей категории.

Экологическая катастрофа, август 2018 Республика Крым.

В августе 2018 года произошла экологическая катастрофа в городе Армянск Республика Крым, причиной выпадения химических веществ является испарение содержимого кислотонакопителя химического предприятия 000 «Титановые Инвестиции».

Актуальность Поиск решения экологической проблемы переработки золы лузги подсолнечника и нейтрализации опасных производственных отходов кислых стоков, упразднения риска экологических катастроф в результате накопления и захоронения, указанных опасных производственных отходов. Цель: Разработать способ промышленной переработки опасного производственного отхода золы лузги подсолнечника и нейтрализации ею и/или её водным раствором опасного производственного отхода кислых стоков.

Задачи: Изучить возможность производства водного щелочного раствора из золы лузги подсолнечника;

Изучить возможность нейтрализации кислых стоков методом добавления в кислые стоки опасного производственного отхода золы лузги подсолнечника;

Изучить возможность нейтрализации кислых стоков, полученным водным щелочным раствором из золы лузги подсолнечника.

Гипотеза: применение естественных химических свойств двух опасных производственных отходов кислых стоков и золы лузги подсолнечника,

направленных на нейтрализацию данных отходов

поправтивенные отходы кислые стоки, относящ

Male	olopom I	muccy offucnocipa						
			7,21					
	Ностан вода	0,8	3,049	2,0 (H ₂ hO ₄)				
	M-Market Name							

В качестве примера в ниже приведённой таблице представлены качественные характеристики кислых стоков опасного завода образованных при разных

производственного отхода с мыловаренного технологических процессах.

волы лузги подсолнечника водой при

па однечника так и золой лузги подсолнечника Проводилась серия лабораторных опытов по неитрализации кислых стоков на базе производственной лаборатории мыловаренного завода. В качестве исходного материала дл производства водного раствора щёлочи бралась зола лузги подсолнечника, выработанная

иу класс

Химические свойства золы лузги маслосемян подсолнечника включает следующие вещества Na20; K20 иные химические вещества

и былир

S₂O₁ = 14,22 P₂O₁ = 7,70 Na₂O = 1,72


	Ne n/n	Количество золы, грамм*	Количество водного рвствора, миллилитр**	Температура, водного растворителя, °С	Показатель pH водного раствора щелочи
ı	1	50 (+/-0.10)	600.00 (+/-0.10)	+ 25.00 (+/-0.10)	09.50 (+/-0.10)
	2	100 (+/-0.10)	500.00 (+/-0.10)	+ 25.00 (+/-0.10)	11.70 (+/-0.10)
	3	150 (+/-0.10)	400.00 (+/-0.10)	+ 25.00 (+/-0.10)	13.80 (+/-0.10)
Я	4	200 (+/-0.10)	300.00 (+/-0.10)	+ 25.00 (+/-0.10)	14.50 (+/-0.10)

Экологический результат, отсутствие актуальности в утилизации

на маслоэкстракционных заводах. на полигонах уничтожения золы лузги подсолнечника и нейтрализацией как золой так и её водным щелочным раствором

Ход работы

- Оценка органолептических показателей воды.
- 2. Биоиндикация токсичности природных вод с помощью дафний.
- 3. Изучение многообразия сине-зеленых водорослей.
- 4. Внесение культуры хлореллы в исследуемую воду.
- 5. Анализ данных эксперимента.

Места забора водь

1. район Обелиска (1), 2. район шламонакопителя ОО «Водоканал-НТ» (2), 3. прибрежная зона ба отдыха (3), 4. устье р. Чауж (4)

Вариант

водопроводная вода)

приток воды р. Чауж

Шламонаколитель «Водоканал-НТ»

район Обелиска

отдыха

Прибрежная зона

Контроль

(отстоянная

000

Процент гибели дафний

20 минут

0

0

0

100

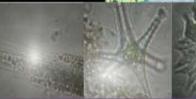
Экспозиция

24 часа

0

55

60


48 часов

20

100

100

Выводы:

-Метод рекультивации может быть дополнительным и наиболее эффективным при комплексном подходе

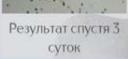
Внесение хлореллы, **УСЛОВИЯХ** лабораторного исследования, способствовало снижени количества сине-зелень водорослей, их токсичности, что привело к повышению биоразнообразия (одноклеточные животные и мелкие

 Доминирующими сине-зелеными оказались род Микроцистис и род Анабена.

—Метод биотестирования позволил выявить острую токсичность воды пруда.

ракообразные)

"Проблемы экологической реабилитации и восстановления Черноисточинского пруда"


Автор проекта: Марукова Виктория 10 класс, МАОУ Политехническая

Руководитель проекта: Зиннатова Эльвира Рашидовна Свердловская область, город Нижний Тагил

Российский национальный юниорский водный конкурс

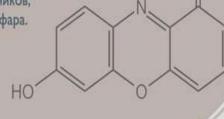
«Питьевая вода Республики Мордовия»

2023 Российский национальный юниорский водный конкурс

Цель: Определение степени минерализации воды в Республике Мордовии из разных питьевых источников.

Актуальность

исследования связана с проблемами загрязнения водных ресурсов Республики Мордовия.


Гипотеза: использование водопроводной воды без предварительной очистки может нанести вред организму. Методика: метод взятия проб, метод сравнительного анализа, изучение литературы, наблюдение, замеры, наблюдение, анализ результатов.

Задачи:

- Изучить литературу по проблеме исследования.
- 2. Овладеть простейшими методами анализа водь
- Выявить степень минерализации и содержания примесей из разных источников питьевой воды.
- 4. Определить причины загрязнения питьевых источников
- На основе полученных данных предложить пути решения проблемы с загрязнением питьевых источников

Оборудование: Xiaomi TDS тестер воды, пробы воды из разных питьевых источников, термометор, лакмус, камфара.

Вывод

1. Изучая, литературные источники по данной проблеме, мы выяснили, что в Республики Мордовия есть серьезная проблема с загрязнением питьевых источников. Это связано, в первую очередь, с антропогенным загрязнением водоисточников, недостаточной санитарной надежностью систем хозяйственно-питьевого водоснабжения, ресурсной необеспеченностью данной области.

- Мы выяснили, что качество питьевой воды можно определить даже в домашних условиях.
- 3. Выявили степень минерализации и содержания примесей из разных источников питьевой воды. Водопроводная вода содержит больше всего вредных примесей, вода из родника, занимает второе место по количеству примесей, это связанно с природным загрязнением источников, при этом уровень минерализации родниковой воды занимает допустимый уровень для употребления. Дистиллированная вода- кристально чистая вода, прошедшая деионизацию, дистилляцию и другие виды очистки. Но эта вода «слишком» чистая и ее не рекомендуется пить постоянно, так как она не содержит полезных для организма минералов. Исходя из этого, мы рекомендуем пить воду, прошедшую очистку через бытовой фильтр.

На основе полученных данных и изучения литературных источников мы предлагаем основные выводы и мероприятия по улучшения водоснабжения: Повышенное содержание фторидов в питьевой воде. Решение:

- а) город Саранск смешение с водой с малыми концентрациями фторидов;
- б) применение локальных обесфторивающих установок в Ардатовском, Большеберезниковском, Зубово Полянском, особенно Инсарском, Ковылкинском, Рузаевском, Торбеевском районах или снабжение населения этих районов бутилированной водой с оптимальным содержанием фтора. Повышенное содержание железа. Решение:
- а) замена труб на полиэтиленовые, стеклопластиковые полиэфирные (для трубопроводов большого диаметра);
- б) по городу Саранску очистка трубопроводов от железа, создание в металлических трубах внутреннего защитного покрытия, противокоррозионная обработка воды ингибиторами.

Необходимость кондиционирования воды — обеспечение наиболее проблемных районов качественной бутилированной водой, особенно наиболее уязвимой группы населения — детей.

Автор: Бакова Татьяна Игоренва Руководитель: Рыбина Ольга Алексеевна, учитель биологии МОУ «СОШ№35» Республика Мордовия

Республика Карелия

ГАПОУ РК «Петрозаводский техникум городского хозяйства»

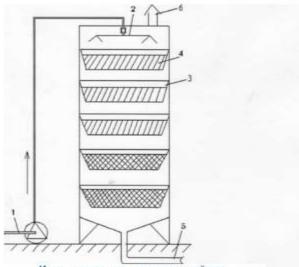
ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ ПРИРОДНЫХ СОРБЕНТОВ ПРИ ОЧИСТКЕ ПОВЕРХНОСТНЫХ СТОКОВ АВТОДОРОГ

Целью исследовательской работы является выбор способа очистки поверхностных вод от автодорог с использованием природных сорбентов.

Залачи:

- Определить сорбщионную емкость;
- Разработать схему очистки;
- Показать экономическую эффективность разработанного метода.

Природные сорбенты


Торф Древесная стружка Торф низовой (опилки) верховой 200 MM 200-500 MM сосна от поверхности от поверхности ель

Эксперимент - Определение сорбционной емкости материалов в сухом состоянии

Схема «сухого» сорбционного фильтра кассетного типа

Концентрации загрязнений по ступеням очистки

	1 ступень		2 ступень		3 ступень		4 ступень		5 ступень		ЩК
Параметры	96 accts	362/3	96	362/3	96	M2/I	%	MS/I	96	Me/a	mir/a
Взясщенные вещества	60	112	60	44,8	60	17,9	60	7,1	60	2,8	10,0
Нефтепродукты	50	5	50	2,5	50	1,25	80	0,25	80	0,05	0,05

Автор: Снеткова Софья

1 - исходный сток:

2 - распылитель;

3 - выдвижная секция с перфорированным дном;

4 - сорбент;

5 - выпуск очищенного стока;

6 – вытяжка

вывол:

1. Использование природных нефтепоглощающих сорбентов оптимально для очистки поверхностных стоков в фильтрах с низовым торфам

2. Утилизация отработанного материала может производится путем сжигания в котельных, работающих на твердом топливе

Руководитель: Романова Наталья Николаевна – заведующая инженерным отделением ГАПОУ РК «Петрозаводский техникум городского хозяйства»

ПРАВИЛА ХОРОШЕГО ПОСТЕРА

Постер читается слева на право

Блоки слева определяют блоки справа

Все выровнено и симметрично

Лучше уменьшить шрифт (отступы)

Используй палитры сочетающих цветов

Добавь что-то яркое (инфографика)

Здесь должен быть Ваш Заголовок

G N I G HL NO P

Иванов, А.В.[‡]; Петров, Д.С.[‡]; Сидоров, А.К., РhD^{‡‡}
[‡]Аффилированный Университет, [‡]Медицинский центр

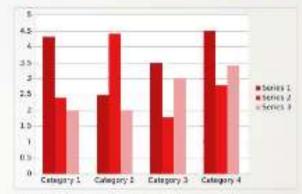
Аннотация

1десь должна быть аннотация вашей работы.

Аннотация вылючает характеристику основной темы, гроблемы объекта, цели работы и ее результаты. В аннотации указывают, что нового несет в себе данный документ в сравнении с другими, родственными по тематике и целевому назначению.

Введение

Введение состоит из подразделов:


- Отжгание проблемы, с которой сказано исследование или установление научного вонтокста (establishing a context).
- Обзор литературы, связанной с исследованием Deviewing the literature).
- Отвисание белых пятен в проблеме или того, по еще не сделано (establishing a research gap).
- Формулировна цели исследования (и, возможно, задач - stating the purpose).
- Oujeria nameorne iccongonamin (evaluating the study).

Pie 1. Houseman (Herymon 1

Методы и материалы

Примерная структура раздела:

- Oбщан схема эксперимента Joverview of the experiment.
- Популяции/образцы (population/sample).
- Расположение района исследования (location of sample plot).
- 4. Ограничения (restriction/limiting conditions).
- Методика отбора образцов (sampling technique).
- Обработка/подготовка ображиле (pricedures).
- Marepwaner (materials).
- Переменные и измерения (variables and measurements).
- Cranycryreckas oбработка (statistical treatment).

Днаграмма 1. Название днаграмны

Результаты и обсуждение

Результаты даются в обработанном сарианте: в виде табамц, графиков, организационных или структурных диаграмм, уравнений, фотографий,

Обсуждение – это идеи, предположения о полученных фактах, сравнение полученных собственных результатов с результатами других авторов.

Заключение

В заключении можно:

- обобщить результаты;
- предложить практическое применение:
- предложить направление для будущих исследований:

Таблица 1. Название таблицы

	Heading	Heading	Heading
Item	800	790	4001
ttem	356	856	290
Item	954	875	976
Item	324	325	301
Item	199	137	186

Библиографический список

Контакты

<Ваше имя> <Ваша организация> Email: Вебсайт: Телефон:

Translatotron 2: High-quality direct speech-to-speech translation with voice preservation

Ye Jia Michelle Tadmor Ramanovich Tal Remez Roi Pomerantz

Google Research

jiaye@google.com

1. Summary

- End-to-end direct speech-to-speech translation (S2ST) model that predicts translation speech and phonemes at the same time
- State-of-the-art performance on both translation quality and speech generation quality
- . Outperforms the original Translatotron by +15.5 BLEU on Fisher Es-En dataset . Speech naturalness on-par with or close to the state-of-the-art TTS [3]
- Preserves each speaker's voice on speaker turns
- Better preserves speaker's privacy and mitigates potential misuse for creating spoofing audio artifacts.

2. Model architecture

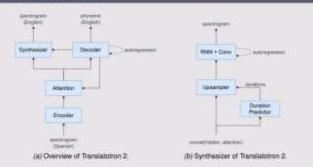


Figure: A Translatotron 2 model that translates Spanish speech into English speech.

- Speech encoder: Encodes input speech into hidden representation, carrying both linguistic and acoustic information + Conformer (144×16) + SpecAugment
- 2. Linguistic decoder: Produces linguistic information for the translation speech.
- . Autoregressively predicts a phoneme sequence corresponding to the translation speech
- . The combination of the encoder, the decoder, and the attention is akin to a typical direct ST model
- Acoustic synthesizer Responsible for acoustic generation of the translation speech
 - A duration-based autoregressive synthesizer from Non-Attentive Tacotron (5)
 - No explicit supervision on per-phoneme duration (only use utterance duration)
- A single attention Ensures the acoustic and linguistic information is synchronized. temporally
- Critical for voice preservation on speaker turns (and other paralinguistic / non-linguistic information).
- Driven by the linguistic decoder, making the alignment modelling easier because of shorter target sequence, and the synthesizer not suffering from robustness issues as in the original Translatotron

3. Experiments

- 3 datasets with synthetic target speech;
- Conversational (Spanish→English) Read conversation. 1,400 hours source speech. Fisher (Spanish-->English) Telephone conversation. 127 hours source speech. CoVoST 2 ((Spanish, French, German, Catalan)→English). Read speech. 476 hours source speech.
- Metrics
- . Translation quality: BLEU computed on ASR transcription from the translation speech.
- Speech naturalness: Subjective Mean Opinion Score (MOS), 1,000 samples per evaluation.
- Generation robustness: Unaligned duration ratio (UDR); measures over-generation in synthesized speech

Results – Translation quality (single voice)

		Conversational			Fisher Es-En			
	BLEU	M	OS	UDB (%)	BLEU	MOS	UDA (%)	
ind-to-end direct S2ST:								
Translatotron 2	55.6	4.21	± 0.06	0.16	42.4	3.98 ± 0.08	0.07	
Translatotron	50.4	4.15	± 0.07	0.69	26.9	3.70 ± 0.08	0.48	
Cascade (ST -+ TTS)	58.8	4.31	± 0.0€	0.21	43.3	4.04 ± 0.08	0.13	
Fleference (synthetic)	81.9	3.37	2 0.00	0.43	88.6	3.95 ± 0.07	0.07	

- Translatotron 2 significantly outperforms the original Translatotron on all aspects * +15.5 BLEU (4-reference), +0.28 MOS, 7× less UDR on Fisher Es-En.
- Performance approaches strong ST→TTS cascade systems
- Outperforms the state-of-the-art S2U→U2S cascade system [4]

5. Voice preservation

- . Training-time voice transferring: use a zero-shot voice cloning TTS for creating synthetic target speechs for training.
- S2ST model learns to transfer voice from source to target implicitly. It cannot be explicitly directed to generate translation speech in a different voice.
- Better preserves speaker's privacy and mitigates potential misuse for creating spoofing audio artifacts.

Speaker turns

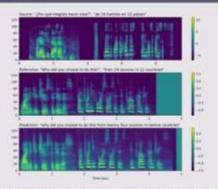
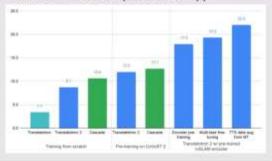


Figure: The input speech includes an utterance from a male speaker followed by another utterance from a female speaker. Translatotron 2 preserves the voices of each speaker in the translation speech.

- . Enabled by the temporal synchronization of linguistic and acoustic information from the single attention.
- . ConcatAug creates training samples with artificial speaker turns.

Sound examples at https://google-research.github.io/lingvo-lab/translatotron2/

Results – Speaker turns


Table: Speaker similarity MOS between the leading/trailing 1 fi-second segment from the English translation speech and the entire 1st/2nd source speaker's Spanish speech.

	16t source	e speaker	2nd source speaker				
	Leading seg. †	Trailing seg. 1	Leading seg. ;	Trailing seg. 1			
Translatotron 2	2.22 + 0.07	2.15 ± 0.07	2.04 ± 0.07	2.00 ± 0.07			
+ ConcatAug	2.44 ± 0.07	1.82 ± 0.07	1.76 ± 0.07	2.51 ± 0.08			
Translatotron	1.87 ± 0.06	1.90 ± 0.07	2.06 ± 0.07	2.05 ± 0.07			
+ ConcatAug	2.18 ± 0.07	1.71 ± 0.06	1.93 ± 0.07	2.35 ± 0.07			
Reference (synthetic)	2.58 ± 0.08	1.62 ± 0.06	1.83 ± 0.07	2.44 ± 0.07			

- Without ConcatAug:
- . About the same similarity between matched and mismatched segments
- Models unable to handle speaker turns because no such data seen during training.
- With ConcatAug:
- . Higher similarity between matched segments, and lower between mismatched ones - Models preserve each speaker's voice
- Translatotron 2 significantly outperforms Translatotron
- · Audio samples: Translatotron suffers from unnatural / incomplete transition between voices. Translatotron 2 does not.
- Thanks to temporally synchronized linguistic and accustic information from the

Public data release – CVSS Corpus [2]

- Common Voice-based Speech-to-Speech translation corpus
- 21 X→En language pairs from CoVoST 2 [6]
- Performance of various S2ST systems on CVSS-C [1]:

9. References

- [1] Y. Jie, Y. Ding, A. Bapna, C. Cherry, Y. Zhang, A. Conneau, and N. Morioka, Leveraging unsupervised and weakly-supervised data to improve direct speech-to-speech translation. In Proc. Intergreech, 2002.
- (I) Y. Jiu, M. Tadroor Ramanovich, Cl. Wang, and H. Zen. CVSS corpus and massively multilingual speech-tospeech translation. In Proc. LREC. 2000.
- (5) Y. Ja, H. Zen, J. Shen, Y. Zhang, and Y. Wu. PhiS BERT: Augmented BERT on phonomes and graphemes for neural TTS. In Proc. Interspeech, 2021.
- (4) A. Lee, P.-J. Chen, C. Wang, J. Gu, X. Mx, A. Polyak, Y. Adi, Q. He, Y. Tang, J. Pisto, et al. Direct apsects-inspeech translation with discrete units. In Prisc ACL 2022.
- (ii) J. Shen, Y. Jia, M. Chrzanowski, Y. Zhang, I. Ekas, H. Zen, and Y. Wu. Non-Attentive Tacotron: Robust and controllable resnel TTS synthesis including unsupervised duration modeling, arXiv, 2020.
- (6) C. Wang, A. Wu, and J. Pins. CoVnST 2: A massively multilingual speech-to-lent translation corpus. In Proc. Interspeech, 2021
- (F) C. Zhang, X. Tan, Y. Ren, T. Qin, K. Zhang, and T.-Y. Liu. UWSpeech: Speech to speech translation for unwritten languages. In Proc. AAAI, 2021.