# Применение геометрических форм в конструкторских разработках и бизнес задачах.

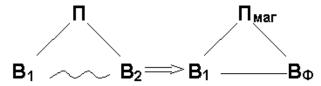
В жизни мы сталкиваемся с решением разного уровня задач – открытыми или закрытыми. В чем их отличие?

Закрытые задачи — это задачи школьного и вузовского образования, когда ответ заведомо известен и вся методология в поиске решений приводит к единственному способу решения, будь то формула Виета, Закона Ома, сопромата, интегральных вычислений и т.п..

Открытые задачи — это наши жизненные ситуации, в которые мы попадаем и не можем подобрать необходимый метод решения, вспоминая полученные школьные и вузовские знания. Для открытых задач необходимо новаторское изобретательское чутьё. Но не каждый родится изобретателем. Бытует мнение, что новаторство и изобретательство — это удел талантливых.

В 1983 году я впервые познакомился с ТРИЗ, на семинаре Г.С.Альтшуллера в Пензе. Большинство его методологий мне очень стали близки. В ту пору я уже работал конструктором, проектируя приборы ТСО – технические средства охранной сигнализации. Никогда не задавался мыслью стать изобретателем, думая, что это удел гениев и талантов. Хотя, Г.С.Альтшуллер всегда утверждал, что стать изобретателем очень просто – овладей ТРИЗ, найди задачу, примени приемы и методы, найди решение и внедри в практику.

Свое первое изобретение я сделал именно по алгоритму ТРИЗ, столкнувшись с реальной профессиональной проблемой в работе графопостроителя. В графопостроителе (автоматическая чертежная машина) основной инструмент – рапидограф.


Рапидограф - инструмент для выполнения точных чертёжных работ. Состоит из небольшой трубки и баллончика с тушью. Внутри трубки расположена тонкая игла, которая отвечает за стабильную подачу краски. Игла соединена с грузом-утяжелителем. Как правило, графопостроитель задействован, по потребности, только в дневную смену. В перерывах работы капля туши, оставшаяся на конце трубки, засыхает и при включении графопостроителя рапидограф с трудом расписывается. Операторы периодически вынимают рапидограф из зажима графопостроителя и встряхивают утяжелитель, игла пробивает засохшую пленку туши. Тратится время и силы на подготовку рапидографа к работе.

Конфликт происходит на конце трубки. Это место и следует рассматривать при решении задачи.

Поставил **ИКР**: пленка **САМА** разрушается при включении графопостроителя. Построил ВА, проанализировал внутренние ВПР системы. Для поиска идей обратился к системе СС-76 стандартов ТРИЗ и нашел нужный стандарт:

# Стандарт 2.4.1. Переход к "протофеполю".

Если дана вепольная система, ее эффективность может быть повышена путем использования ферромагнитного вещества и магнитного поля:

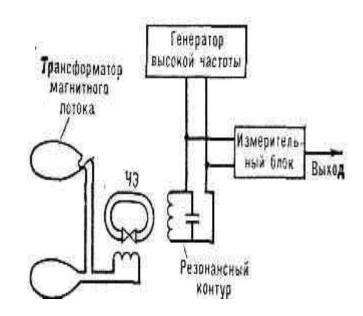


Делаю вывод, что надо механическое (не управляемое) поле заменить на магнитное (управляемое), тем более, что игла и утяжелитель выполнены из металла, кторый хорошо воспринимает магнитное поле.

В этот период, после семинара Г.С.Альтшуллера, я увлекся патентоведением, побывал на ряде курсов повышения квалификации по патентоведению и даже получил высшее образование – патентовед.



Порывшись патентом архиве рапидографа и не найдя подобной идеи решил выполнить опытный образец найденной идеи. Для этого подключил двух своих коллег, с которыми провели испытания опытного образца и получили отчет по испытанию. Данный отчет был приложен к заявке на изобретение. Вскоре я получили первое в своей жизни авторское свидетельство № 1234229 «Пишущий прибор автоматической чертежной машины»./ Авт. изобрет. К. Ф. Демочкин, Н. И. Черников, В. И. Ефремов. – Заявл. 20.11.84. № 3813670/28-12; опубл. в БИ № 20, 1986; МКИ В 43 К 8/00, G 01 D 15/16.


После этого уже четко уверился в то, что, владея инструментарием ТРИЗ, любые открытые задачи становятся по плечу. Главное — это вскрыть противоречия и поставить ИКР. Окрыленный таким успехом я часто, в своей конструкторской практике, брался за сложные задания, которые отвергались моими коллегами, и выполнял проекты на должном уровне. При этом всегда сталкивался с возникающими конфликтами перед коллегами - завистью. Так как в конструкторской среде не так много было коллег, имеющих авторские

свидетельства на свои разработки. И здесь, для выхода из конфликтных ситуаций, всегда помогали советы из разработки в ТРИЗ - ЖСТЛ (жизненная стратегия творческой личности).

Одним из таких сложных заданий была разработка конструкции датчика СКВИД (сверхпроводящий квантовый интерферометр движения), работающего в жидком гелии и улавливающего слабые магнитные поля, исходящие из коры головного мозга. Главный элемент датчика — это трансформатор магнитного потока.

## Исходная ситуация 1.

Чувствительным элементом трансформатора служат 3 пары кругообразных проволочных петель из ниобия (на рис. изображена одна пара), соединенных друг с другом по определенной схеме. Круговые петли должны располагаться в пространстве с очень высокой точностью по параллельности и перпендикулярности с погрешностью 0,001 мм.



В прототипе, на основе которого проектировался датчик, для ориентации в пространстве петель используется диэлектрик - высокоточный эбонитовый куб (ребро - 20 мм., погрешность по параллельности и перпендикулярности граней - 0,001 мм.). Круговые петли на гранях куба фиксируются эпоксидным клеем в круговых канавках глубиной 2 мм..

Допустим, можно изготовить высокоточный куб с канавками, уложить в них петли и залить клеем, но за счет усадки клея петли будут деформироваться и точность по параллельности и перпендикулярности петель исчезнет. Точность измерения датчика ослабнет, показания станут неточными. Как быть? Повторять прототи или найти более технологичное конструкторское решение?

Заказчик задания настаивал ничего не выдумывать и разработать конструкторскую документацию под опытный образец. Любой коллега на моем месте поступил бы именно так. Чего ломать голову, есть прототипаналог, надо его образмерить и переложить размеры на ватман в чертежи. Тут вспомнился экспонат из музея авиации в Монино. Когда в 1946 году по приказу И.В.Сталина конструктора образмерили сбитый самолет В-2, а

производственники изготовили один экземпляр – точную копию оригинала, с дюймовыми резьбами болтов, гаек, шпилек и т.п. Так и остался B-2 музейным экземпляром, т.к. в советском производстве резьбы метрические, а не дюймовые.

Изучив техническое задание и, вникнув в технологическую проблему, в мысли, сразу, всплыли шаги АРИЗ – алгоритм решения изобретательских задач. Привожу хронологию мыслительного процесса поиска нового решения:

**Противоречие ТП -1:** если круговые петли просто уложить в канавки куба, то они изогнутся и измерений не будет.

**Противореие ТП -2:** если круговые петли фиксировать клеем в канавках куба, то при усадке клея они деформируются, измерения будут неточными.

**Главный производственный процесс ГПП:** Необходимо при минимальных изменениях обеспечить укладку круговых петель с высокой точностью (перпендикулярность и параллельность = 0,001мм) на гранях куба.

#### Конфликтующая пара.

Изделие – проволочные петли.

Инструмент – куб с канавками.

Нежелательный элемент – эпоксидный клей.

#### Уточнение задачи.

Даны - проволочные петля и куб с канавками. «Отсутствующий» куб не деформирует петли, но и не обеспечивает размещение петель с точностью в пространстве. Необходимо найти такой икс-элемент, который, сохраняя способность «отсутствующего» куба не деформировать петли размещал бы петли в пространстве.

ГПП: размещение петель в пространстве без деформации проволоки.

**Оперативная зона конфликта ОЗ:** пространство между стенками канавки куба и петлей.

**Оперативное время ОВ:** время Т1 — до формирования петли; время Т2 — после формирования петли.

**Ресурсы в ОЗ - ВПР:** материал и геометрия куба, канавки, клей, проволока (ниобий).

# Определение идеальности ИКР.

**Икс-элемент,** абсолютно не усложняя систему и не вызывая вредных явлений (перегибы петель), устраняет перегибы петель в течение ОВ в пределах ОЗ, сохраняя способность инструмента (куба) ориентировать (с точностью 0,001 мм.) круговые петли по отношению друг к другу в пространстве.

**ИКР** (проволоки): проволока **САМА** преобразуется в круглую петлю и фиксируется на грань куба с заданной точностью (0,001 мм.).

## Мобилизация и применение ВПР.

Суть работы с ВПР заключается в том, что для решения задачи необходимо вводить новые Ресурсы, но анализ требует не вводить их, используя существующие и исходя из постановки ИКР.

Замечу, что конструкторские решения ВСЕГДА, как правило, связаны с геометрией форм.

В то время, с подачи Г.С.Альтшуллера, я занимался в ТРИЗ исследованиями по разработке УГЭ (Указатель геометрических эффектов), в частности такой формы, как конус. Поэтому сразу обратился к функциональной таблице.

## Таблица функционального применения Конуса (раздел УГЭ).

| № п/п | Требуемая функция                                |  |
|-------|--------------------------------------------------|--|
| 1     | Изменение линейных размеров                      |  |
| 2     | Дробление и смешивание веществ                   |  |
| 3     | Ориентация в пространстве и направление движения |  |
| 4     | Повышение жесткости и получение опоры            |  |
| 5     | Концентрация энергии                             |  |

Из п.3 таблицы видно, что конус позволяет реализовать функцию – «ориентация в пространстве и направление движения». В ходе мыслительных операций была предложена конструкция псевдокуба, с конусами на гранях (см. рис.1).

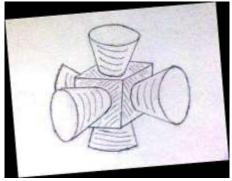



Рис.1. Псевдокуб.

Проволочная петля формируется за счет опетления конуса и САМА, при натяжении проволоки, ложится на грань псевдокуба выполненного из диэлектрика (эбонита).

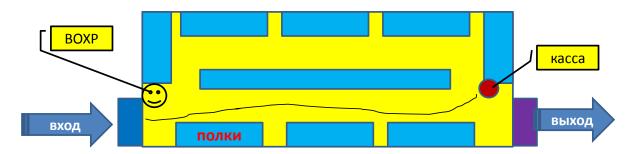
Мы выяснили, что для изготовления такого «Псевдокуба-Конуса» вполне подходит обычный токарный станок, дающий, при определенной оснастки, заданную точность по перпендикулярности и плоскостности граней куба -

0,001 мм. Требуется только 3 переустановки заготовки на токарном станке, что несложно эти переустановки заложить в технологический процесс.



В последствие, оформив заявку в Роспатент, на решение было получено наше авторское типа), свидетельство (закрытого a при эксплуатации такого датчика эксплуатационные характеристики измерений параметры значительно превосходили ранее заявленный прототип.

**Авторское свидетельство №295324.** Сверхпроводящий трансформатор магнитного потока трехкомпонентного магнитометра. / НИКИРЭТ; В. И. Ефремов, Н. И. Черников.; G 01 R 33/035; без опубл.


**Резюме:** Что лучше, решать закрытую задачу (воспроизвести конструкцию прототипа) или решить открытую (изобретательскую) творческую задачу? Выводы делать только Вам, уважаемый читатель.

Мы в жизни всегда сталкиваемся с открытыми задачами и, вводя САМИ ограничения в условия, решаем для себя перевести задачу в закрытую или начать решать открытую задачу. Чаще всего, люди, не умеющие решать задачи, переводят открытую задачу в закрытую и сталкиваются с определенными трудностями в поиске решений.

Вот характерные примеры из жизни в решении бизнес задач с применением геометрических форм.

#### Исходная ситуация 2:

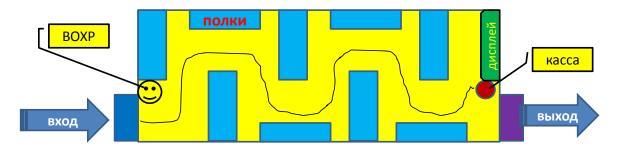
# Жизненная ситуация



#### Мини магазин самообслуживания

Предприниматель арендует помещение под мини магазин шаговой доступности.

Помещение в виде вытянутого прямоугольника с двумя входными группами, расположенными по разные стороны. Предприниматель выставил торговые полки вдоль стен.


Торговля в первые дни открытия шла бойко, а затем упала. Арендная плата высокая, а прибыли нет.

Как быть, что предпринять?

?

©, В.И. Ефремов, 2015 г.

## Так работает консультант-мерчендайзер ТРИЗ



#### Мини магазин самообслуживания

Предприниматель обратился за помощью к консультанту по мерчендайзингу, владеющему технологией ТРИЗ.

Консультант сформулировал ИКР: Покупатели САМИ обходят в торговым зале, за счет ресурса – площадь мини магазина, все полки выкладки товара.

Оцените решение с использованием геометрического эффекта - Синусоиды.

3

©, В.И. Ефремов, 2015 г.

#### СИНУСОИДА

Предприниматель, блуждая по полкам мини магазина, в котором поработал мерчендайзер ТРИЗ призадумался: «Почему, придя за одними покупками, набрал так много товара?».

Подытожил выручку своего мебельного супермаркета и сказал себе: «Теперь ни один покупатель не выйдет из моего магазина, пока не рассмотрит все товары!"
И через пару дней сдержал свое слово.



Он организовал пространство супермаркета в виде лабиринта (эффект - Синусоида), так что, войдя в магазин, выйти из него можно было только пройдя по всему "маршруту" мимо всех стендов и образцов мебели. Через месяц его выручка резко подросла.

©, Сост. В.И.Ефремов, 2016

Первая публикация УГЭ: Кривая, которая всегда вывезет. Геометрия для изобретателей.// Авт. И. Л. Викентьев, В. И. Ефремов // Раздел книги «Правила игры без правил» Сост. А. Б. Селюцкий. — Петрозаводск: «Карелия», 1989., тир. 20 тыс. экз., стр. 77...177.



Работа по дополнению УГЭ новыми формами продолжается автором. Появились новые функциональные применения таких форм, как Синусоида, Конус, Клин, Цепи, Микросферы.

**Вывод:** то, чему обучают в школе и вузе, специалистами забывается и не применяется в открытых жизненных задачах. Либо надо менять систему образования, либо надо обучать технологиям принятия решений, в частности, ТРИЗ.

# Приложение. УКАЗАТЕЛЬ ГЕОМЕТРИЧЕСКИХ ЭФФЕКТОВ.

| Требуемая функция,                | Геометрический эффект, способ реализации    |  |  |
|-----------------------------------|---------------------------------------------|--|--|
| действие                          |                                             |  |  |
| ПРЕОБРАЗОВАНИЕ ОБЪЕКТОВ (ВЕЩЕСТВ) |                                             |  |  |
| Изменение линейных                | Спираль. Лента Мёбиуса. РК-профиль. Эллипс. |  |  |
| размеров.                         | Синусоидальный профиль. Параллелограмм.     |  |  |
| Изменение и регулирование         | Щетка. Спираль. Лента Мёбиуса. Эффект       |  |  |
| площади                           | воронки. Синусоидальный профиль.            |  |  |
|                                   | Гиперболоид                                 |  |  |
| Изменение объемных                | Спираль. Гипотрохоида. Шарики.              |  |  |
| свойств                           | Микросферы. Эллипс. Синусоидальный          |  |  |
|                                   | профиль.                                    |  |  |
| Изменение и регулирование         | Гофры. Лист Мёбиуса. Эффект воронки.        |  |  |
| поверхности                       | Эпитрохоида. Синусоидальный профиль.        |  |  |
|                                   | Микросферы.                                 |  |  |
| Изменение радиуса                 | Эффект воронки. Микросферы.                 |  |  |
| кривизны                          | Синусоидальный профиль.                     |  |  |
| Дробление и смешивание            | Щетка. Лист Мёбиуса. РК-профиль. Шарики.    |  |  |
| веществ                           | Гофры.                                      |  |  |
| Сепарация на группы и             | Щетка. Спираль. Синусоидальный профиль.     |  |  |
| фракции                           | Клин. Циклоида.                             |  |  |
| Соединение, фиксация и            | Сыпучие тела. Щетка. РК-профиль. Шар и      |  |  |
| контактирование                   | шарики. Микросферы. Синусоидальный          |  |  |
|                                   | профиль. Цепи. Сети. Гиперболоид.           |  |  |
| Временное накопление              | Щетина. Волнообразный профиль. Сети.        |  |  |
| Фильтрация веществ                | Сыпучие тела. Спиральная намотка. Лента     |  |  |
|                                   | Мёбиуса. Шарики. Цепи.                      |  |  |
| Ориентация в пространстве         | Щетина. РК-профиль. Синусоидальный          |  |  |
| и направления движения            | профиль и гармоника.                        |  |  |
| Транспортирование и               | Шнек и винтовая поверхность. Микросферы.    |  |  |

| перемещение               |                                            |  |  |
|---------------------------|--------------------------------------------|--|--|
| Адаптация к криволинейной | Сыпучие тела. Щетины. Спиральная намотка.  |  |  |
| поверхности               | Параболоид. Шаровая поверхность.           |  |  |
|                           | Микросферы. Цепь. Гиперболоид.             |  |  |
| Формирование              | Конус. Эллипс. Спиральная намотка.         |  |  |
| криволинейных форм и      |                                            |  |  |
| линий                     |                                            |  |  |
| Повышение жесткости и     | Сыпучие тела. Лист Мёбиуса. Шарики.        |  |  |
| получение опоры           | Микросферы. Эллипс. Синусоидальный         |  |  |
|                           | профиль. Зигзаг.                           |  |  |
| Повышение плавучести      | Полый шар. Полые микросферы.               |  |  |
| ПРЕОБРАЗОВАНИЕ ЭНЕРГИИ    |                                            |  |  |
| Диссипация (рассеивание)  | Сыпучие тела. Щетина. Спираль. Парабола.   |  |  |
| энергии                   | Шарики. Эллипс. Синусоидальный профиль. S- |  |  |
|                           | образный профиль. Цепи. Сети.              |  |  |
| Создание вибрации         | РК-профиль. Шар и шарики. Эллипс.          |  |  |
|                           | Синусоида.                                 |  |  |
| Концентрация энергии      | Спираль. Парабола. Щетки. Эллипс. Шар и    |  |  |
|                           | шарики. Микросферы.                        |  |  |
| Фокусирование энергии и   | Полый стеклянный шар. Микросферы. Эллипс.  |  |  |
| излучения                 |                                            |  |  |
| Преобразование движения   | Конус. Спираль. Шнек. Клин. Лист Мёбиуса.  |  |  |
| одного вида в другой      | Шар. Синусоида. Брахистохрона.             |  |  |
| Преобразование энергии    | Цепь. Спираль. Конус. Сыпучие тела. Лист   |  |  |
| одного вида в другой      | Мёбиуса. Гофры. S-образный профиль.        |  |  |
|                           | Синусоида. Клин. Гиперболоид.              |  |  |
| Обработка поверхности     | Сыпучие тела. Щетка. Шар. Микросферы.      |  |  |
| Создание чувствительных   | Гиперболоид. Шар и россыпь шариков.        |  |  |
| датчиков                  | Микросферы.                                |  |  |

# ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ГЕОМЕТРИЧЕСКИХ ФОРМ

В конце каждого раздела УГЭ дается описание способов изготовления конкретных форм. В начале разделов - сыпучие тела, спираль, шар, микросферы, синусоида уточняется процесс преобразования данных форм.